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Crystals are the elementary constituents of Laue lenses, an emerging technology

which could allow the realization of a space-borne telescope 10–100 times more

sensitive than existing ones, in the 100 keV–1.5 MeV energy range. This paper

addresses the development of efficient crystals for the realization of a Laue lens.

In the theoretical part, 35 candidate crystals, both pure and two-component

crystals, are considered. Their peak reflectivity at 100, 500 keV and 1 MeV is

calculated assuming they are mosaic crystals. It is found that, by careful selection

of crystals, it is possible to achieve a reflectivity above 30% over the whole

energy range, and even up to 40% in the lower part of the energy range. In the

experimental part, three different materials (Si1�xGex with a gradient of

composition, mosaic Cu and Au) have been measured at both ESRF and ILL

using highly monochromatic beams ranging from 300 to 816 keV. The aim was to

check their homogeneity, quality and angular spread (mosaicity). These crystals

have shown outstanding performance, such as reflectivity up to 31% at

�600 keV (Au) or 60% at 300 keV (SiGe) and angular spread as low as

15 arcsec for Cu, fulfilling very well the requirements for a Laue lens

application. An unexpected finding is that there are important discrepancies

with Darwin’s model when a crystal is measured using various energies.

1. Introduction

Despite the very rich physics it offers, the soft gamma-ray sky

is not fully exploited at present because the telescopes in this

domain are blinded by intense and complex instrumental

background induced in their detectors by the space environ-

ment (cosmic rays, radiation belts, Earth albedo and solar

flares; see e.g. Weidenspointner et al., 2005). The instruments

currently operating in this part of the electromagnetic spec-

trum do not use focusing optics. They reconstruct the inci-

dence direction of detected events either by an aperture

modulation (coded mask) or by tracking the multiple

(Compton) interactions of photons in a sensitive volume. The

common point of these two techniques is that the signal is

collected onto an area which is itself the sensitive area.

To keep improving our knowledge of the violent celestial

processes responsible for the emission of high-energy photons

we need to develop more sensitive telescopes. With the

existing kind of telescopes, more sensitive means larger in

order to collect more signal. However, the improvement in

sensitivity only scales with the square root of the collection

surface since the instrumental background scales with the

volume of the detectors. This is why it appears impossible to

make the required sensitivity leap of a factor of 10–100 with

the existing principles of soft gamma-ray telescopes.

A new approach involving the concentration of gamma rays

has been studied for more than a decade and proved to be

feasible in the �100 keV–1.5 MeV domain (von Ballmoos et

al., 2004). This paper addresses the work that has been

ongoing for the past four years to develop efficient elementary

constituents for such lenses: crystals.

The principle of Laue lenses is described in x2. x3 gives an

overview of the theories used to model diffraction in both

mosaic crystals and crystals having curved diffracting planes.

x4 deals with the theoretical study that has been undertaken to

identify which among pure-element and two-component



crystals is best suited for use in a Laue lens. x5 presents the

results of the experimental characterizations of the three

different types of crystal whose diffraction properties have

been investigated: gradient SiGe, Cu and Au. x5.5 describes

the discrepancies that we have noticed with mosaic crystals

between Darwin’s model and experimental results. The

conclusions and perspectives of this work are given in x6.

2. Principle of a Laue lens

A Laue lens concentrates gamma rays using Bragg diffraction

in the volume of a large number of crystals arranged in

concentric rings and accurately orientated in order to diffract

radiation coming from infinity towards a common focal point

(e.g. Lund, 1992). In the simplest design, each ring is

composed of identical crystals, their axis of symmetry defining

the line of sight of the lens (see Fig. 1).

Bragg’s law links the angle �B between the rays’ direction of

incidence and the diffraction planes to the diffracted energy E

through the diffracting planes’ d spacing dhkl,

2dhkl sin �B ¼ hc=E ð1Þ

, 2dHKL sin �B ¼ nðhc=EÞ; ð2Þ

with h, k, l the Miller indices defining the set of diffracting

planes at work (another notation uses H, K, L prime numbers

and n the order of diffraction), h the Planck constant and c the

velocity of light in a vacuum. Considering a focal distance f ,

the mean energy diffracted by a ring only depends on its

radius r and the d spacing of its constituent crystals (Halloin &

Bastie, 2005):

E ¼
hc

2dhkl sin 1
2 arctan r=fð Þ
� � / f

dhkl r
: ð3Þ

We can distinguish two types of lenses. The first type uses

either various crystalline materials or various reflections

(keeping in mind that higher orders are less efficient) to

maintain the product dhkl r constant in every ring so that they

all diffract the same energy (E1 ¼ E2 in Fig. 1). This principle

allows the realization of a narrow bandpass lens like the

prototype CLAIRE which used eight Ge reflections in eight

rings to focus around 170 keV (Halloin et al., 2003; von Ball-

moos et al., 2004).

On the other hand, if the same reflection of a given material

is used on many consecutive rings, the diffracted energy is

slightly shifted from one ring to the next, increasing towards

smaller radii (E1 >E2 in Fig. 1). If the crystals diffract a

bandpass large enough, the contributions diffracted by

neighbouring rings overlap, resulting in a broadband contin-

uous energy coverage.

Recent Laue lens telescope projects combine both effects.

They use several ranges of rings (each range being composed

of rings using a single reflection) that superimpose to cover

efficiently broad energy bands. One such project, the Gamma

Ray Imager (GRI), that has been proposed1 to the European

Space Agency (ESA) uses mainly Cu 111, Cu 200, Cu 220 and

SiGe 111 to create two broad bandpasses ranging over 220–

650 and 790–910 keV, achieving several hundreds of cm2 of

effective area (Knodlseder et al., 2007; Barrière et al., 2007).

Single perfect crystals only diffract an energy band of a few

eV wide, given by the Darwin width (see e.g. Authier, 2001). A

Laue lens requires that crystals diffract a larger band. Two

types of crystals can achieve this: mosaic crystals and crystals

having curved diffracting planes (CDP crystals). For a GRI-

like lens, the crystals’ optimal angular spread (hereafter called

mosaicity2) has been proven to be around 30 arcsec (Barrière,

2008), a figure which should be multiplied by a factor of �2–3

for Laue lenses having a shorter focal length (GRI has a focal

length of 100 m).

3. Theory of diffraction in mosaic and CDP crystals

3.1. Definitions

We shall introduce two quantities that will be used in the

following. The reflectivity is defined as the ratio of the

diffracted beam intensity over the incident beam intensity, and

the diffraction efficiency is defined as the ratio of the diffracted

beam intensity over the intensity of the transmitted beam

when no diffraction occurs.

3.2. Mosaic crystals

Mosaic crystals are described using Darwin’s model as an

assembly of tiny identical small perfect crystals, the crystallites,

each slightly misaligned with respect to the others according to

an angular distribution usually taken as Gaussian (Darwin,

1914, 1922). Zachariasen (1945) gives the equation of the

intensity diffracted as a function of the angle of incidence:

Ih;mos ¼ I0

1

2
1� expð�2�T0Þ
� �

exp
��T0

cos �B

� �
; ð4Þ
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Figure 1
The principle of a Laue lens: a large number of crystal tiles arranged in
concentric rings diffract radiation coming from infinity towards a
common focus. Depending on the radius of the rings and the d spacing
of the crystals, several rings may or may not concentrate the same energy.

1 In June 2007, this project was proposed in response to the first
announcement of the opportunity of the long-term plan Cosmic Vision
2015–2025.
2 For the sake of simplicity, we propose to call mosaicity (noted �) the full
width at half-maximum of the angular distribution of diffracting planes, even
in the case of crystals with curved planes.



where I0 is the incident intensity, T0 is the crystal thickness, �
is the linear absorption coefficient, and � can be interpreted as

the coherent diffusion coefficient that is written as

� ¼ Wð��ÞQ; ð5Þ

where �� is the difference between the actual angle of inci-

dence of the beam onto the diffracting planes and the Bragg

angle. W is the distribution function of the crystallite orien-

tation and Q is the integrated intensity diffracted by a single

perfect crystal per unit of thickness. Q is given by the dyna-

mical theory of diffraction

Qdyn ¼
�2 dhkl

�2
0 cos �B

f ðAÞ; ð6Þ

where in the Laue symmetric case f ðAÞ is given by

f ðAÞ ¼
B0ð2AÞ þ j cos 2�BjB0ð2Aj cos 2�BjÞ

2Að1þ cos2 �BÞ
ð7Þ

’
B0ð2AÞ

2A
: ð8Þ

The above approximation [equation (8)] can be applied when

�B is small, which is always valid for energies above 100 keV.

B0 is the Bessel function of zero order integrated between 0

and 2A and A is defined as

A ¼
� t0

�0 cos �B

; ð9Þ

in which t0 is the crystallite thickness. �0 is called the extinc-

tion length and is defined for the Laue symmetric case (see e.g.

Authier, 2001) as

�0 ¼
�Vc cos �B

re� jCj jFhklj
; ð10Þ

with Fhkl being the structure factor (taking into account the

electron’s repartition in space, the crystal lattice and the effect

of temperature via the so-called Debye–Waller factor which is

included in the structure factor), Vc the volume of the crystal

unit cell, re the classical radius of the electron and C the

polarization factor.

We note that the dynamical theory tends towards the

kinematical theory when t0 � �0 [which implies f ðAÞ ! 1 in

equation (6)]. In this case, crystals are referred to as ideally

imperfect crystals and Q is given by Qkin ¼

ð�2 dhklÞ=ð�
2
0 cos �BÞ.

The distribution function of the crystallite orientation W

can be expanded as

Wð��Þ ¼ 2
lnð2Þ

�

� �1=2
1

�
exp � lnð2Þ

��

�=2

� �2
" #

ð11Þ

where � is the full width at half-maximum (FWHM) of the

angular distribution of crystallites (called mosaicity or mosaic

spread).

The reflectivity is derived from equation (4), with its peak

value obtained for �� ¼ 0

Rpeak
mos ¼

I
peak
h;mosðT0Þ

I0ð0Þ
¼

1

2
1� exp½�2Wð0ÞQT0�
� 	

exp
��T0

cos �

� �
:

ð12Þ

The thickness maximizing the peak reflectivity is derived from

equation (12):

@Rpeak
mos

@T
¼ 0 , T0 ¼

ln 2Wð0ÞQ=�þ 1½ �

2Wð0ÞQ
: ð13Þ

Halloin & Bastie (2005) proposed a comprehensive version of

the calculation of the diffracted intensity in a mosaic crystal,

specifically, the equations to compute the structure factor

(including atomic form factor and Debye–Waller factor) and a

numerical method to calculate the B0 function.

3.3. Crystals having curved diffracting planes

CDP crystals can be obtained in three ways (Smither et al.,

2005). One is by applying a thermal gradient perpendicular to

the considered planes of a perfect single crystal. The second is

by bending elastically a perfect single crystal. This bending can

be achieved by means of an external device applying a force

on the crystal (as is commonly done for monochromators in

synchrotron radiation facilities), but also through the deposi-

tion of a coating on a wafer or by grinding or grooving one

face of a wafer. The third way is by growing a two-component

crystal whose composition varies along the crystal growth axis.

A thermal gradient gives excellent results because it

produces a very pure spherical curvature, but it requires a

significant amount of electric power which is not available

onboard a space-borne observatory. Elastic bending by

surface treatment seems promising for a Laue lens but it has

not yet been investigated. Our CDP crystals were obtained by

growing composition-gradient crystals, which produces

intrinsically curved planes without any mechanical stress.

Equations describing the diffraction in such crystals are

given by Malgrange (2002). They are an extension of the so-

called PPK theory of diffraction in distorted crystals (Penning

& Polder, 1961; Kato, 1963) for the case of a large and

homogeneous curvature. In this theory the distortion of

diffracting planes is described by the strain gradient �,

� ¼
�0

cos2 �B

@2h � u

@s0 @sh

; ð14Þ

which can be written in a simpler way in the case of a uniform

curvature,

� ¼ �=ðT0�wÞ; ð15Þ

� being the FWHM of the angular distribution of planes, or

mosaicity, T0 the thickness of the crystal and �w half the

Darwin width (the Darwin width is defined as 2�w). s0 and sh

are unit vectors, respectively, parallel to the incident and

diffracted beams. h is the reciprocal lattice vector of the

reflection hkl and u is the displacement vector.

When the strain gradient becomes larger than a critical

value �c ¼ �=ð2�0Þ, Balibar et al. (1983) showed that a new

wavefield is created which decreases the intensity in the

diffracted wavefield. In the case of a uniform curvature of
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planes, when the condition �>�c is fulfilled, the intensity

diffracted at the plateau is given by Malgrange’s formula

(Keitel et al., 1999; Malgrange, 2002)

Ih;curved ¼ I0 1� exp½�2�ð�c=j�jÞ�
� 	
� exp½ð��T0Þ=ðcos �BÞ� ð16Þ

¼ I0 1� expð��2=	Þ
� �

exp½ð��T0Þ=ðcos �BÞ�: ð17Þ

The 	 parameter appearing in equation (17) can be expanded

as

	 ¼
�

2

j�j

�c

¼
@�=@T �0

�w

¼
� �2

0

T0 dhkl

: ð18Þ

It is interpreted as the angular variation of the diffracting

planes’ orientation over the extinction length, in units of

Darwin width.

The thickness maximizing the reflectivity can easily be

obtained under the hypothesis that the curvature of planes cp

is uniform. In this case cp can be related to the mosaicity and

the thickness as follows:

cp ¼ �=T0: ð19Þ

Inserting equation (19) in equation (17), one gets

Ih;curved ¼ I0 1� exp½�ð�2dhklÞ=ðcp�2
0Þ�

� 	
� exp½�ð��Þ=ðcp cos �BÞ�: ð20Þ

Let us define

M ¼
�2dhkl

�2
0

and N ¼
��

cos �B

: ð21Þ

It follows that the curvature of planes maximizing the reflec-

tivity is obtained by solving the equation

@Ih

@cp

¼ 0 ,
@

@cp

1� expð�M=cpÞ
� �

expð�N=cpÞ
� 	

¼ 0 ð22Þ

, copt
p ¼

M

ln 1þM=Nð Þ
: ð23Þ

Using equation (19) we obtain the thickness maximizing the

reflectivity as a function of energy and mosaicity (for a given

crystal and reflection):

T0 ¼
� ln 1þM=Nð Þ

M
: ð24Þ

3.4. Comparison

There are two main differences between the diffraction

properties of mosaic and CDP crystals. Firstly, the diffraction

efficiency is limited to 50% in the case of mosaic crystals while

it can reach 100% with CDP crystals. Secondly, the diffraction

profile of a mosaic crystal is close to Gaussian while it is

rectangular for a CDP crystal. The spatial distribution of the

beam diffracted by a crystal being the convolution of its

diffraction profile by its spatial extent (assuming a uniform

beam larger than the crystal), the footprint of a CDP crystal

onto the focal plane does not have the large tails of a Gaus-

sian. In other words, CDP crystals concentrate the signal

better than mosaic crystals. These two points together make a

sizable difference in the resulting sensitivity of a telescope. In

fact, a telescope having its lens composed of CDP crystals

would be 75% more sensitive than the same telescope with a

lens composed of mosaic crystals (considering identical

materials) (Barrière, 2008).

Hence, CDP crystals are substantially more suitable than

mosaic crystals for the realization of a Laue lens, but in reality

they are much more difficult to produce. Si1�xGex are the only

ones that we have been able to procure until now. A feasibility

study concerning Ge1�xSnx, carried out at the Institute of

Crystal Growth (IKZ, Berlin, Germany), concluded that it was

not feasible. Indeed, the maximal solubility of Sn in Ge is

about 1% (instead of 100% for Ge in Si) which strongly limits

the range of the composition gradient. Moreover, the growth

of such crystals is extremely difficult because of constitutional

under-cooling on the liquid–solid interface, so that the 1%

maximum concentration cannot be reached experimentally.

Another option that has not been explored yet is Ni1�xSnx

[mentioned by Smither (1982)]. Noting the reflectivity of Ni

(see x4) such a composition-gradient crystal appears to have

good potential.

4. Search for suitable crystals: theoretical study

Our field of investigation has been limited to pure materials

and two-component crystals. Crystals composed of more than

two elements have not been considered because their large

unit-cell volume would strongly decrease their diffracted

intensities. We will start with the selection of potentially

interesting pure materials.

Suitable materials for a Laue lens must first and foremost

exist in the crystalline state at ambient temperature and

pressure conditions without being too reactive in air (spon-

taneous combustion, deep oxidation) nor radioactive or overly
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Figure 2
The electron density in crystalline matter.



toxic. Secondly, they must diffract X-ray radiation efficiently,

which is linked to a high electron density and depends also on

the crystal lattice: the most efficient crystals have either a

diamond, face-centred cubic (f.c.c.) or body-centred cubic

(b.c.c.) lattice. Fig. 2 shows the electron density of pure

elements in the crystalline state. Half-filled squares represent

elements fulfilling the above conditions but having a melting

point above 2273 K and/or being rare and expensive. Filled

circles represent chemical elements fulfilling the conditions

and being more readily available than the ones represented as

half-filled squares.

18 out of about 100 chemical elements are potentially

interesting, namely Al, Si, V, Cr, Ni, Cu, Ge, Mo, Rh, Pd, Ag,

Ba, Ta, W, Ir, Pt, Au and Pb. Among these 18 elements,

numerous are soft and/or ductile, for instance Cu, Ag, Au and

Pb. Crystals must be mechanically robust enough to undergo

an accurate orientation and must not deteriorate during the

intense vibrations induced by the rocket launch. Soft materials

are nevertheless kept in the list because a slight doping is often

enough to modify the mechanical properties without changing

the X-ray diffraction properties.

Another important selection criterion is availability in large

quantities with a good homogeneity. Crystals whose growth is

well mastered are of prime interest. Unfortunately, applica-

tions of a pure-element crystal are rather limited, which

explains why there are almost no industrial patterns for

producing a large quantity of constant-quality ingots, with the

exception of Ge and Si. On the other hand, two-component

crystals are used in many applications, e.g. GaAs, InAs and

InP in electronics, CaF2 for UV lithography, or CdTe for hard

X-ray detectors. Therefore, we have added to the 18 pure

elements an arbitrary selection (still open to new entries) of

two-component crystals easily available in industry that may

represent an interesting perspective for the realization of a

Laue lens. An extra advantage of two-component crystals is

that some of them cleave. To have the external faces repre-

sentative of crystalline planes can be a strong asset for the

mounting and orientation of large numbers of crystals on a

lens structure.

In order to quantify and compare the diffraction capability

of these crystals, we have calculated their peak reflectivity for

three different energies covering our domain of interest (100,

500 keV and 1 MeV) assuming they are mosaic crystals.

Darwin’s model using the dynamical theory [equation (12)]

has been employed considering that the mosaicity is 30 arcsec,

the crystallite thickness is 5 mm and the thickness is calculated

to maximize the peak reflectivity according to equation (13),

within the limits 1 	 T0 	 25 mm. In each case, the most

intense reflection is considered as stated in Table 1.

Fig. 3 shows the results. As expected, at high energy the

crystals having the highest reflectivity are the ones with a high

mean atomic number (Z) (see Table 1), and conversely, at low

energy, the highest reflectivity is produced by crystals having a
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Table 1
Miscellaneous data for the crystals considered in this study.

Crystal Mean Z Lattice
Most intense
reflection

Debye
temperature (K)

Cleavage
plane

LiF 6 NaCl 200 7231 (100)
MgO 10 NaCl 200 7432 (100)
CaF2 12.66 CaF2 220 3543 (111)
Al 13 f.c.c. 111 4284

NaCl 14 NaCl 200 2905 (100)
Si 14 Diamond 220 6454

KCl 18 NaCl 200 2355 (100)
NiO 18 NaCl 200 3176

SrF2 18.66 CaF2 220 2623 (111)
V 23 b.c.c. 110 3804

Cr 24 b.c.c. 110 6304

BaF2 24.66 CaF2 220 1963 (111)
Ni 28 f.c.c. 111 4504

Cu 29 f.c.c. 111 3434

InP 32 ZnS 220 5007

GaAs 32 ZnS 220 2648

Ge 32 Diamond 220 3744

CsCl 36 b.c.c. 110 1625

InAs 41 ZnS 220 3509

ZnTe 41 ZnS 220 19810

Mo 42 b.c.c. 110 4504

Ru 44 h.c. 002 6004

Rh 45 f.c.c. 111 4804

Pd 46 f.c.c. 111 2744

Ag 47 f.c.c. 111 2254

InSb 50 ZnS 220 28011 (100)
CdTe 50 ZnS 220 14512

Ba 56 b.c.c. 110 1104

HgTe 66 ZnS 220 10513

Ta 73 b.c.c. 110 2404

W 74 b.c.c. 110 4004

Ir 77 f.c.c. 111 4204

Pt 78 f.c.c. 111 2404

Au 79 f.c.c. 111 1654

Pb 82 f.c.c. 111 1054

References: (1) Cotts & Anderson (1981); (2) Beg (1976); (3) Palchoudhuri & Bichile
(1989); (4) Kittel (1970); (5) Kumara Swamy et al. (1996); (6) Freer (1981); (7) Matsuo
Kagaya & Soma (1986); (8) Stevenson (1994); (9) Fawcett et al. (1969); (10) Bashir et al.
(1988); (11) Racek et al. (1973); (12) Zubı́k & Valvoda (1976); (13) Mavroides & Kolesar
(1964).

Figure 3
The peak reflectivity of various potentially interesting crystals, sorted by
increasing mean atomic number (Z) (and density in the case of equal
mean Z). The calculation assumes mosaic crystals with a mosaicity of
30 arcsec, a mean crystallite size of 5 mm and a thickness optimized to
maximize the peak reflectivity within the limits 1	 T0 	 25 mm. For each
crystal, the reflection considered is given in Table 1.



low mean Z. For the low-energy side, this effect is due to the

fact that the minimum thickness allowed in the calculation is

1 mm, which makes high mean Z crystals very absorbent at

100 keV. Various crystals, both pure or two-component, can

yield a reflectivity above 40% at 100 keV. In the scope of this

study the best at 100 keV is MgO, which has two advantages: it

cleaves along (100) planes, and it is very hard (hardness of 6 on

the Mohs scale). However, whether it is possibile to find it with

a suitable mosaicity is debatable.

Crystals with a hexagonal compact (h.c.) lattice have not

been considered in this study because this lattice is not as

efficient as the cubic ones. As an example, 44Ru (h.c.) and 45Rh

(f.c.c.) have an almost identical density of electrons (Fig. 2) but

Ru is far less efficient than Rh at 500 keV and 1 MeV.

At 500 keV we see that the two-component crystals are no

longer a good option. In contrast, Cu, Ni, Ag, Rh and Pb

exhibit high reflectivities. They are relatively affordable and

produced with a mosaic structure (private communication),

which makes them good potential candidates. At 1 MeV, in the

conditions taken for this calculation, only Ta, W, Ir, Pt, Au and

Pb yield a reflectivity above 25%, Pb being the most efficient

bearing more than 30%. The group Ta, W and Ir have very

elevated melting points (2996, 3410 and 2410 K, respectively)

which makes them expensive and difficult to obtain with a

constant quality. Pt is very expensive and hence not produced

in industrial quantities (several kg). At the moment there

remain only Pb and Au as viable candidates. Au is quite

expensive but still affordable and seems to be available with a

suitable mosaicity, as shown in the experimental results.

This study highlights that a careful choice of crystals can

permit coverage from 100 keV up to 1 MeV with a reflectivity

above 30%, which is outstanding for this energy domain. It is

necessary to identify many candidates for the same energy

subrange in order then to use only those whose actual

measured quality satisfies our requirements.

5. Experimental results and discussion

5.1. Facilities and data treatment

Since 2005 numerous samples have been measured using

two facilities in Grenoble (France): the GAMS 4 instrument at

ILL and the beamline ID15A at the European Synchrotron

Radiation Facility (ESRF).

At ESRF we used two Ge 711 monochromators bent on the

Rowland circle to get a sharp monochromaticity between

about 280 and 600 keV with a fixed exit. Our samples were

held by a sucking plate specially designed to allow fast sample

changes without damage. The measurements consist of

rocking curves (RCs) in Laue geometry in both diffraction and

transmission. RCs are performed one after the other with a

single high-purity Ge detector which is moved from one beam

to the other. The beam intensity is monitored by the current of

electrons in the storage ring of the synchrotron.

The GAMS 4 instrument uses the gamma-ray flux produced

by neutron capture in a target inserted close to the nuclear

reactor of ILL. We used an erbium target to produce lines

among which was the one at 815.986 keV (�E=E ’ 10�6). To

select the line, we used a low-mosaicity quartz crystal that gave

a beam divergence of about 2 arcsec. The same type of

detector and method as used at ESRF were used to record the

RCs.

RCs in transmission and diffraction recorded on the same

area of the crystal samples are put together and normalized by

the intensity of the transmitted beam when no diffraction

occurs. Thus, a complementary peak and valley show directly

the diffraction efficiency. Reflectivity is then obtained by

applying the transmission coefficient to take into account the

absorption through the crystal.

In the case of mosaic crystals, RCs are fitted using Darwin’s

model (as defined in x3.2) which allows the extraction of the

mosaicity and the crystallite size. For coherence, the diffrac-

tion efficiency values presented in this paper also come from

the fit of Darwin’s model. In the case of CDP crystals, an

average of the diffraction efficiency is made over the width of

the plateau.

5.2. Copper mosaic crystals

Copper crystals were produced by the monochromator

group of ILL, where they manage the growth of 8 kg ingots of

very low mosaicity (Courtois et al., 2005). The group has

extensive experience in growing high-quality Cu crystals, but

our requirements in mosaicity are far more stringent than their

usual requirements. Mosaicity and homogeneity were the

main challenges with Cu mosaic crystals. Recently, some

pieces of Cu mosaic crystal featuring a mosaicity below

1 arcmin have been measured. Three examples are shown

hereafter (all samples have been measured as-cut without

surface treatment).

The first one is the sample 834.�4 (55� 20 mm cross section

and 3 mm thick). It was measured at ESRF in 25 points using

the 111 reflection in a 299 keV beam. Averaged values are

reported in Table 2 and examples of RCs are shown in

Fig. 4(a). As we can see, Darwin’s model (continuous line) fits

the data quite well. Note, however, that the RCs show small

enlargements at the base, most likely due to defects induced

by the cut. This sample shows a good homogeneity with an

average mosaicity of 25 arcsec and a standard deviation of
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Table 2
Summary of the results of the Cu crystals investigated.

Mosaicity, diffraction efficiency and crystallite thickness are obtained from
Darwin’s model fits. Values are averaged over all measurement spots, and their
uncertainty is the standard deviation. The bottom row permits the crystallite
thickness to be related to the extinction length.

Crystal name Cu 834.�4 Cu 834.�3 Cu 834.31
Reflection 111 111 220
Thickness (mm) 3.0 9.0 10.3
Energy (keV) 299 589 816
Mosaicity (arcsec) 25 (6) 14 (6) 39 (6)
Peak diffraction efficiency 0.46 (2) 0.47 (4) 0.12 (2)
Peak reflectivity 0.34 (2) 0.26 (2) 0.06 (1)
Size of crystallites (mm) 60 (15) 129 (43) 210 (31)
A ¼ � t0=�0 1.27 (32) 1.38 (46) 1.17 (17)



6 arcsec only (over 25 spots). Its average diffraction efficiency

is 46%, which corresponds to an excellent reflectivity of 34%.

This sample is an excellent example of what is needed to build

a Laue lens.

The second sample, 834.�3 (55 � 20 mm cross section and

9 mm thick), has been measured at ESRF in 25 spots using the

111 reflection in a 589 keV beam. The average parameters

extracted from the data are summarized in Table 2 and
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Figure 4
(a) RCs recorded on the crystal Cu 834.�4 using a beam of 299 keVand the 111 reflection. The crystal is 3 mm thick, the surface has been left as-cut which
may be the reason for the tails around the peak. The mosaicity at this point is 29 arcsec and the diffraction efficiency reaches 47%, yielding a reflectivity
of 35% taking into account the transmission coefficient of 0.75. (b) RCs recorded on the crystal Cu 834.�3 using a beam of 589 keVand the 111 reflection.
The crystal thickness equals 9 mm, which makes a transmission coefficient of 0.55. The mosaicity at this point is 14 arcsec. The diffraction efficiency
reaches 50%, yielding a reflectivity of 27.5%. (c) Averaged RCs over ten measurement spots on the crystal Cu 834.31 using the 220 reflection and a
816 keV beam. (d) Peak diffraction efficiencies measured on the three Cu crystals 834.31 (averaged over the ten spots), 834.�3 and 834.�4 as a function of
mosaicity. Experimental results are compared with Darwin’s model using the kinematical theory. (e) RCs recorded on the 111 reflection of the gold
sample Au 1 with a beam energy of 588 keV. The estimated mosaicity is 16 arcsec. Taking into account the absorption through the thickness of 2 mm a
reflectivity of 31% is found. The continuous line indicates a fit to Darwin’s model. ( f ) Simulated RCs using Darwin’s model of an Au crystal (111
reflection) of 2 mm thickness, of 30 arcsec of mosaicity and having crystallites of 40 mm thickness.



examples of the RCs are shown in Fig. 4(b). Despite instru-

mental problems that produced an oscillation of the counting

in transmission geometry, we immediately notice that

Darwin’s model fits very well and that these RCs are very

narrow for a Cu crystal. Indeed, the average mosaicity of this

sample is 14 
 6 arcsec which is among the smallest values
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Figure 5
(a) One of the most striking RCs recorded on the sample SiGe 10.3 from the 111 reflection. The thickness of the sample is 20 mm, and the beam energy is
297 keV. The mosaicity equals 12 arcsec and the reflectivity 60%. (b) Diffraction efficiency measured on the crystal SiGe 10.3 at 297 keV (red) and at
489 keV (blue), along the growth axis. The continuous line shows the theoretical prediction assuming a constant Ge concentration of 2.5%. (c) Ingot 368
of Si1�xGex, x varying along the growth axis (x increases towards the right in the picture), produced at IKZ. Six pieces each measuring 15 � 15� 23 mm
were extracted (as shown in the figure). The dashed line represents the (111) spherical planes. (d) The mosaicity as a function of crystal position along the
growth axis in the six pieces extracted from the ingot SiGe 368. Measurements have been performed at ESRF using the 111 reflection and a 299 keV
beam. (e) A very good example of a measured RC from the 111 reflection of the sample SiGe 368 1b; the rectangular shape of the curves is very close to
what is expected in the ideal case, showing the regularity of the curvature of diffracting planes. The thickness of the sample is 23 mm and the beam energy
was 299 keV. ( f ) Peak diffraction efficiency measured on the six pieces extracted from the ingot SiGe 368 as a function of mosaicity and compared with
theoretical predictions (continuous line).



ever measured in a Cu crystal. Initially the thickness was

optimized for 850 keV which explains why, despite a good

diffraction efficiency, the reflectivity is ‘only’ 26%.

The last Cu sample, Cu 834.31 (19.2 � 21 mm, 10.3 mm

thick), has been measured in the 220 reflection at 816 keV

(GAMS 4) over ten large spots of 2 � 11 mm covering more

than half its face. RCs shown in Fig. 4(c) are averaged over all

spots. As indicated in Table 2 the mean mosaicity is 39 arcsec

and its standard deviation over the ten spots is 6 arcsec, which

indicates a satisfactory homogeneity.

Disregarding the influence of the crystallite thickness (i.e. in

the limit of the kinematical theory) the diffraction efficiency

decreases with Wð0ÞQkin, which is proportional to

dhkljFhklj
2=E2 �. Knowing that d220 < d111 and jF220j

2 < jF111j
2

one understands why this crystal yields a lower diffraction

efficiency than the two former, equalling 12%. Fig. 4(d) shows

the measured peak diffraction efficiency versus the mosaicity

for the three Cu samples and for comparison theoretical

values according to the kinematical theory [calculated using

equation (12) with a crystallite thickness of 0.1 mm but disre-

garding the absorption term]. As can be seen, at 816 keV even

an ideally imperfect crystal is not efficient with the 220

reflection: with a mosaicity of 40 arcsec, we could have

expected at most a diffraction efficiency of 16.3% (which

would have resulted in a reflectivity of 9.1%). For comparison,

in the same conditions the 111 reflection would lead to a

diffraction efficiency of 35.7%, making a reflectivity of 19.7%.

It results from this study that Cu crystals as produced at ILL

are usable for the realization of a Laue lens. Between energies

of �300 and �600 keV these crystals give optimal results.

However, during our experimental runs we have noticed that

cutting is critical to the final properties of the crystal sample

(performed with an EDM machine at ILL). It can induce

defects over depths of the order of 1 mm or more which

cannot be removed by acid etching. A systematic study would

have to be undertaken to determine the best compromise

between cutting speed and degradation of the crystals.

5.3. Si1�xGex concentration-gradient crystals

An Si1�xGex alloy with x increasing along the crystal growth

axis (gradient crystal) was produced at IKZ (Abrosimov,

2005). The increase in Ge concentration deforms the silicon

lattice, resulting in a spherical curvature of the diffracting

planes perpendicular to the growth axis. In our case, crystals

have been grown along the [111] direction, which results in a

spherical curvature of the (111) planes. Since the Ge

concentration remains low in the crystal the curvature is

approximatively proportional to the gradient of Ge concen-

tration (Smither et al., 2005),

rCGe ’ "=Rc; ð25Þ

where rCGe is the gradient of Ge concentration expressed in

atomic percentage per cm, Rc the radius of curvature of planes

(in m) and " a constant. The assumption that the curvature is

regular (spherical) permits the gradient of Ge concentration

to be related to the mosaicity �,

rCGe ’ "�=T0; ð26Þ

with T0 the thickness of the crystal. " equals 25 in Smither’s

paper (Smither et al., 2005).

The first part of the investigation consisted of the char-

acterization of the diffraction properties of several spare

samples given by IKZ of which SiGe 10.3 is of particular

interest. This sample (28 � 16 mm, 20 mm thick) has been

measured twice at ESRF using the 111 reflection. The first

time we measured 15 points on the crystal axis (along the

gradient direction) using a 297 keV beam. We noticed that the

mosaicity increased from the low Ge concentration side to the

high Ge concentration side as expected. The change in

curvature is a convenient tool to study the agreement with the

theory. Among the RCs recorded the most outstanding is

shown in Fig. 5(a).

This sample has also been measured at five points along the

growth axis using a 489 keV beam. The results of both series of

measurements have been gathered in Fig. 5(b), where the peak

(or plateau) diffraction efficiency is plotted as a function of 	
[equation (18)], a variable that increases with both E and �.

The black continuous line shows the theoretical predictions

according to equation (17) using as input a mean Ge

concentration of 2.5 at.% assumed constant over the 16 mm

width of the sample (it intervenes in the calculation of the d

spacing, the structure factor and the absorption factor).

Accordance with theory is apparent for larger 	 values when

the energy increases. This point has been noticed on another

sample as well, but is not yet fully understood.

In 2007 three ingots of SiGe were produced in IKZ with the

objective of checking the relation between the growth para-

meters (initial Ge concentration, pulling speed, shape of the

crystal) and the gradient of Ge concentration, which is eval-

uated through the RC width using equation (26). In this series

the ingot referred to as SiGe 368 has allowed the extraction of

six pieces of 15 � 15 � 23 mm as represented in Fig. 5(c). The

pieces have been used as-cut without further surface treat-

ment as it has been previously established that nothing

changed after a deep acid etching (0.5 mm on each face).

Every piece was measured in 13 different spots at ESRF using

a 299 keV monochromatic beam and the 111 reflection [RC in

transmission and diffraction as shown in Fig. 5(e)]. Fig. 5(d)

shows the RC width as a function of the position along the

growth axis, the low-Y side having the lowest Ge concentra-

tion. � increases from 30 arcsec up to about 95 arcsec over the

75 mm length of the various pieces, but is relatively constant in

the two asymmetric pieces 1a and 1b.

Fig. 5( f) is a plot of the diffraction efficiency measured on

each spot as a function of the RC width �. On this plot the

continuous line shows the theoretical prediction calculated

from equation (17), but this time using an evolving Ge

concentration: using the measured Ge concentration at the

extremity of the samples (the low-concentration side of

samples 1a and 1b and the high-concentration side of sample

5), and knowing the corresponding solidified fraction g (see

Table 3), we refined the value of the segregation coefficient to
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k = 0.42 (assuming it to be constant on this part of the crystal)

and plugged it into the Scheil–Pfann formula

Cs
Ge ¼ k CGe;0 ð1� gÞk�1; ð27Þ

where Cs
Ge is the Ge concentration in the solid phase, and CGe;0

is the initial Ge concentration in the melt. CGe;0 = 0.05 in the

case of ingot SiGe 368. With this data we can approximate the

Ge concentration quite well along the 75 mm of the six

samples (see the right-hand column of Table 3) and so

determine the theoretical diffraction efficiency. The agree-

ment with theory is quite good, especially for the large values

of �, where the curvature of planes is larger. We could have

plotted the diffraction efficiency versus 	, which would have

spanned from 9 to 35 in this case. This would show, again, that

the agreement is better for larger 	 values than for small ones.

Unfortunately, it has not been possible to measure the SiGe

368 samples at a different energy (we have already recorded

156 RCs). This would have permitted us to check if the

‘accordance point’ shifts towards larger 	 for a higher energy.

The agreement between theory and experiments means that

the curvature of diffracting planes is very regular. We also

notice that there is no visible difference between symmetrical

(2, 3, 4 and 5) and asymmetrical (1a and 1b) cut elements,

which bodes well for our application since it means that the

whole volume of the ingot can be utilized.

The ultimate objective of this development process is to

grow crystals having a constant gradient of Ge concentration,

which value would produce a curvature optimized for an RC

width of 30 arcsec at 300 keV. All indications point towards

this goal being achievable. New samples that have now been

produced will hopefully confirm this during further beamtime

at ESRF.

5.4. Prospective for high-reflectivity crystals: Au

In the context of the search for more efficient crystals for

high-energy diffraction, a gold crystal (a disc of 10 mm in

diameter and 2 mm thick) has been purchased from the

German company Mateck. This crystal, which has been

polished, was measured at four different energies (299, 399,

494 and 588 keV) at ESRF. For each energy five spots

(forming a square of 5 mm of diagonal plus its centre) of 1 �

1 mm were probed using the 111 reflection. Results have been

grouped in Table 4 and a typical RC of this crystal is shown in

Fig. 4.

The results are very positive; the crystal seems homo-

geneous with a mosaicity ranging from 16 arcsec at 588 keV to

30 arcsec at 300 keV and achieves an excellent diffraction

efficiency. This high-Z material was the first of a new wave of

investigations. A less successful attempt was also conducted

with a Pt crystal (from Mateck) which showed multiple grains

and an overall mosaicity larger than 1�. Recently, several Ag

and Rh crystals have been purchased (from Mateck) and will

be characterized.

5.5. Limitation of Darwin’s model

In the previous example (Table 4) the crystallite thickness

seems to increase as the inferred mosaicity decreases. This

apparently non-physical behaviour has been observed in other

measurements of mosaic crystals (Barrière, 2008) as well and

is not explained by Darwin’s model. As shown in Fig. 4( f), it is

expected that the FWHM of the RCs decreases when energy

increases. This behaviour is due to the fact that the extinction

length [equation (10)] is proportional to the energy: at low

energy the extinction length is smaller than the crystallites,

which implies that the diffraction peak is cut due to primary

extinction in each crystallite. The peak being cut results in a

larger FWHM. Hence, the fit of data with Darwin’s model

does not require the mosaicity to be decreased to fit this

FWHM falloff. However, the observed effect is much more

important than that which can be modelled by dynamical

effects in a crystal described by Darwin’s model.

Moreover, the apparent increase in crystallite size is hardly

explained in the same way: if the apparent size of the crys-

tallites was driven by the extinction length the value of A

[defined in equation (9)] should remain constant with respect

to the energy of measurement, which is not the case. Our

interpretation of these phenomena is that the crystallites in a

mosaic crystal are not all identical but have a size distribution.

Hence, one emphasizes the small crystallites when the beam

energy is low, because large crystallites have a lower contri-

bution owing to primary extinction. On the other hand, one

emphasizes the large crystallites at high energy when the

longer extinction length brings the crystallites into a regime

where they diffract proportionally to their size (i.e. a regime

described by the kinematical theory). In this idea, the
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Table 3
Position along the growth axis (Y), solidified fraction (g), measured Ge
concentration (CGe;exp) and calculated Ge concentration (CGe;calc) in the
crystal SiGe 368.

Y (mm) g CGe;exp (at.%) CGe;calc (at.%)

0 0.192 2.40 (15) 2.38
15 0.347 2.69
30 0.484 3.08
45 0.596 3.55
60 0.692 4.16
75 0.777 5.05 (20) 5.01

Table 4
Summary of the results obtained with the gold crystal Au 1 using the 111
reflection.

Mosaicity, diffraction efficiency and crystallite size are obtained from Darwin’s
model fits. Values are averaged over five measurement spots (1 � 1 mm), and
their uncertainty is the standard deviation. The bottom row permits
comparison of the crystallite size with the extinction length.

Energy (keV)

299 399 494 588

Mosaicity (arcsec) 30 (5) 24 (3) 24 (2) 18 (3)
Peak diffraction efficiency 0.47 (2) 0.47 (1) 0.46 (2) 0.45 (2)
Peak reflectivity 0.12 (1) 0.22 (1) 0.26 (1) 0.29 (2)
Size of crystallites (mm) 46 (3) 52 (3) 57 (4) 65 (6)
A ¼ � t0=�0 2.04 (13) 1.73 (9) 1.53 (11) 1.47 (13)



observed decrease in mosaicity can be explained if one

assumes that the smaller crystallites have a correspondingly

larger angular distribution than the larger crystallites, which

seems a reasonable hypothesis.

A consequence of the increase in crystallite size when the

energy of measurement increases is that diffraction stays in

the regime of dynamical theory instead of entering the regime

of kinematical theory as we could have expected from the

increase in extinction length. It means that crystals are less

efficient than we could have expected from their parameters

deduced from low-energy measurements. Accurate perfor-

mance estimates of Laue lenses require a reliable modelling of

intensities diffracted by crystals. Since the energy dependence

of the crystal parameters is not yet modelled, it is not possible

to extrapolate accurately the performance of a crystal from

one energy to another. There are two possibilities for solving

this problem: either we try to refine Darwin’s model, inte-

grating a dispersion of crystallite size, or we can try to deter-

mine the ‘evolution’ of the crystallite size that we have to input

in Darwin’s model to agree with experimental results. In the

present data set the evolution of A with energy is very well

fitted by a second-degree polynomial curve (R2 = 0.9994) with

the parameters

A ¼ 3:759� 7:650� 10�3 Eþ 6:382� 10�6 E2: ð28Þ

With only one crystal measured on one spot at four energies, it

is hard to derive conclusions. Is this evolution of A the same

for any crystal? Is this equation still valid if we extend the

energy range of investigation? Either to refine Darwin’s model

or to model the evolution of A, in both cases more measure-

ments are required.

6. Conclusions and perspectives

The last iteration of Si1�xGex production has given very

satisfactory results, paving the way towards the final phase of

our development programme: the production of constant-

gradient ingots allowing the extraction of homogeneous pieces

having a 30 arcsec bandpass and optimized for 300 keV. Cu

crystals have also shown that our requirements are attainable

with pieces having a mosaicity as low as 15 arcsec and reflec-

tivity in accordance with theoretical predictions.

A new phase in these investigations started with the char-

acterization of a gold sample. This 2 mm-thick sample has

lived up to expectation with an excellent reflectivity near

600 keV. A Laue lens such as the one designed for the GRI

mission could benefit dramatically from the enablement of

high-Z crystals such as gold. Ag and Rh crystal samples will be

measured as well, hopefully enlarging our portfolio of usable

materials, which is of prime importance for the design of

efficient lenses.

More generally, the identification of efficient crystals opens

the way for additional experimental tests. Two-component

crystals, in particular, are of great interest since their growth

has already been developed for other applications. High-Z

pure elements are quite rare and expensive, but are mandatory

when building an efficient lens covering energies higher than

600 keV. Alternatively, crystals having intrinsically curved

diffraction planes can enhance dramatically the overall

performance of Laue lenses. This field, which is largely

unexplored so far, could also reveal some interesting appli-

cations in high-energy monochromators (X-rays and

neutrons), a fact that further strengthens the drive for initi-

ating a development process.
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